
EigenAI: Deterministic Inference, Verifiable Results

David Ribeiro Alves
david@eigenlabs.org

Vishnu Patankar
vishnu@eigenlabs.org

Matheus Pereira
matheus@eigenlabs.org

Jamie Stephens
jamie@eigenlabs.org

Nima Vaziri
nima@eigenlabs.org

Sreeram Kannan
sreeram@eigenlabs.org

Abstract

EigenAI is a verifiable AI platform built on top of the
EigenLayer restaking ecosystem. At a high level, it
combines a deterministic large–language model (LLM)
inference engine with a cryptoeconomically secured op-
timistic re–execution protocol so that every inference
result can be publicly audited, reproduced and, if nec-
essary, economically enforced. An untrusted operator
runs inference on a fixed GPU architecture, signs and
encrypts the request and response, and publishes the
encrypted log to EigenDA. During a challenge window,
any watcher may request re–execution through Eigen-
Verify; the result is then deterministically recomputed
inside a trusted execution environment (TEE) with a
threshold–released decryption key, to allow a public
challenge with private data. Because inference itself
is bit–exact, verification reduces to a byte–equality
check and a single honest replica suffices to detect
fraud. We show how this architecture yields sovereign
agents—prediction–market judges, trading bots, sci-
entific assistants—that enjoy state–of–the–art per-
formance while inheriting security from Ethereum’s
validator base.

1 Introduction and Motivation

Large-language-model (LLM) inference is rapidly
evolving from a consumer-facing chatbot interface into
a critical back-end service for autonomous and semi-
autonomous agents. These agents may trade assets,
adjudicate market outcomes, draft contracts, or curate
social feeds; in all cases, they must be trusted. To-
day’s cloud AI APIs offer impressive performance but
provide no cryptographic or economic assurance that
an inference was executed faithfully on the claimed
model and inputs. This trust gap renders current AI
infrastructure unsuitable for high-stakes or on-chain
contexts.

Verifiability as a missing primitive. Blockchains
revolutionized finance by making state transitions
publicly verifiable and economically final. In con-
trast, AI systems remain opaque: the mapping from
prompt to output is hidden behind proprietary in-
frastructure, and inference itself is nondeterministic
on modern GPUs. Two identical queries to the same
model can yield divergent outputs because of floating-
point non-associativity, kernel scheduling, and vari-
able batching. Without reproducibility, verification
through re-execution—the approach underpinning op-
timistic blockchains—is impossible.

EigenAI’s proposition. EigenAI closes this gap
by introducing a complete verifiable-AI stack:

1. Deterministic inference: bit-exact reproducibil-
ity on fixed GPU architectures using custom ker-
nels, version-pinned drivers, and canonical reduc-
tion orders.

2. Optimistic verification: inference results are
posted, encrypted, to EigenDA and enter a chal-
lenge period. Any verifier can re-execute deter-
ministically; mismatches trigger slashing of the
operator’s stake.

3. Privacy: all user prompts and results remain con-
fidential through threshold key management and
TEE-based attestation before decryption.

4. Economic security: backed by EigenLayer’s val-
idator base—millions of restaked ETH—providing
orders of magnitude more collateral than bespoke
AI networks.

Sovereign verifiable agents. On top of this foun-
dation, developers can deploy “sovereign” agents whose
logic and reasoning steps are cryptographically trace-
able. Prediction-market adjudicators, AI traders, sci-
entific analysts, or verifiable NPCs in games can all
operate under the same principle: every inference is
reproducible, every deviation is detectable, and every

1

misbehavior is penalized.

Where verifiability matters most. Verifiable in-
ference is most valuable when an agent’s output trig-
gers an irreversible external action or resolves a dis-
pute between mutually distrusting parties. Concrete
classes of sovereign-agent applications that benefit the
most include:

1. On-chain adjudication and dispute resolu-
tion: prediction markets, insurance claims, and
DAO governance that require a publicly auditable
ruling rather than a trusted intermediary.

2. Autonomous execution agents: trading, liqui-
dation, and treasury-management bots whose ac-
tions move real capital and therefore benefit from
accountable, replayable decision traces.

3. Compliance- and audit-driven workflows:
contract drafting, policy enforcement, and sci-
entific/engineering assistants where later au-
ditability (“what was executed, under which
model/environment, and why?”) is as important
as raw model quality.

In these settings, deterministic receipts plus an en-
forceable challenge process turn an opaque API call
into a verifiable, economically accountable computa-
tion.

Paper organization. Section 1 motivates the need
for verifiable inference. Section 2 reviews prior ap-
proaches to verifiable computation and determinis-
tic execution. Subsequent sections (not yet pop-
ulated here) will describe the EigenAI architec-
ture, deterministic-GPU methodology, optimistic-re-
execution protocol, economic guarantees, and empiri-
cal results.

2 Background and Related Work

Three broad paradigms exist for making AI inference
verifiable:

Cryptographic Proofs of Correctness Zero-
knowledge (ZK) and interactive proof systems can, in
principle, produce a succinct proof that an untrusted
operator executed a neural network faithfully. Systems
such as SafetyNets [1] and later zkDNN frameworks
[2] demonstrate this feasibility but remain impractical
for frontier LLMs: even with hardware acceleration,
proving a full transformer forward pass takes minutes
to hours. The high cost of circuit synthesis and proof
generation limits adoption to small or static models.

Statistical or Consensus-Based Replication An
alternative is to execute the same query on multi-
ple replicas and accept the majority or the statis-
tically consistent output. Methods include Monte-
Carlo dropout and deep ensembles [3, 4] and, more
recently, self-consistency decoding [5]. However, these
approaches only bound the probability of correctness
and cannot detect rare but adversarial divergences [6].
Moreover, their cost scales with O(ε−2 logn) replicas
to achieve error ε—impractical for billion-parameter
models.

Deterministic Execution Environments Deter-
ministic inference guarantees bit-for-bit identical out-
puts for identical inputs. CPU or WebAssembly sand-
boxes (e.g., PyTorch deterministic mode [7], ONNX
Runtime Web [8]) provide reproducibility but are
10–100× slower than GPU back-ends and cannot serve
production-scale LLMs. Recent vendor documenta-
tion (e.g., NVIDIA cuBLAS reproducibility guide
[9, 10]) and research [11, 12] show that determinism
on GPUs is attainable if hardware architecture, driver,
and library versions are fixed and atomic reductions
avoided.

Optimistic Verification and Crypto-Economic
Guarantees Optimistic rollups in blockchain systems
introduced a model where results are accepted by de-
fault but can be challenged through re-execution; dis-
honest operators are economically penalized. EigenAI
extends this idea to AI inference. Determinism enables
disputes to collapse to a simple byte-equality check
rather than a full consensus or proof-generation pro-
cess. EigenVerify—the verification layer—leverages
EigenLayer’s restaked validator pool to provide the
necessary bonded capital for slashing. Because verifi-
cation is only invoked under dispute, the steady-state
cost approaches that of normal inference while main-
taining cryptographic accountability.

Trusted Hardware and Threshold Key Manage-
ment Trusted Execution Environments (TEEs) such
as Intel SGX or AMD SEV provide hardware isolation
and remote attestation [13]. When combined with
threshold cryptography, they allow privacy-preserving
verification: encrypted requests on EigenDA are de-
crypted only inside attested enclaves that prove cor-
rect code execution. This design mitigates the trade-
off between verifiability and confidentiality.

Summary. Table 1 summarizes these paradigms by
latency, cost, and trust assumptions. EigenAI com-
bines deterministic inference (for fast re-execution)
with optimistic crypto-economic enforcement (for se-
curity), achieving a unique balance of speed, cost, and

2

trust-minimization.

3 System Model and Threats

EigenAI’s trust model extends EigenLayer’s Actively
Validated Services (AVS) framework to AI inference.
It formalizes how operators, verifiers, and users inter-
act under deterministic execution and cryptoeconomic
guarantees. This section defines the system partici-
pants, their responsibilities, the security assumptions,
and adversarial capabilities.

3.1 System Entities

Client / Requester Submits an inference request
req consisting of a model identifier, container digest,
GPU architecture tag, driver/toolkit version, de-
coding policy, and prompt commitments. Requests
are signed and optionally encrypted to the EigenAI
public key before dispatch.

Operator Executes inference inside a containerized
runtime fixed to a single GPU architecture (e.g.,
H100). Produces outputs (out, logits), constructs a
signed receipt committing to input/output hashes,
and posts the ciphertext and receipt to EigenDA.
Each operator maintains an on-chain identity and
bonded stake in EigenLayer.

EigenDA A data-availability layer ensuring im-
mutable publication of receipts and ciphertexts.
Provides inclusion proofs for challenge adjudica-
tion.

EigenVerify A decentralized network of verifiers,
economically secured by EigenLayer stake, that
handles challenges. Each verifier runs a threshold-
cryptography Key Management Service (KMS) and
trusted execution environment (TEE) runtime. On
challenge, it re-executes the inference deterministi-
cally to confirm or refute the operator’s claim.

KMS Shards Hold encrypted key shares for the
EigenAI application private key. They release
shares only to enclaves that successfully attest cor-
rect code identity, enabling privacy-preserving re-
execution.

3.2 Workflow Overview

At a high level, EigenAI follows an optimistic sub-
mit–publish–verify pipeline whose correctness hinges
on deterministic re-execution. We briefly narrate the
end-to-end flow and then detail each phase.

Submission. A client constructs and signs an in-
ference request req that fixes the model, container
digest, GPU architecture, driver/toolkit version, de-
coding policy, PRNG seed, and (optionally) prompt
commitments. The signed req is transmitted to an op-
erator for execution. In practice, treating these fields
as immutable execution parameters is what later al-
lows any verifier to replay the request under identical
conditions.

Execution. Upon receipt, the operator runs the
model under the declared environment, producing
the output out together with (optionally) auxiliary
artifacts such as per-step logits. Because the execution
stack is deterministic (cf. Section 6), any honest re-
run of the same request on the same architecture will
yield a byte-identical out.

Publication. To preserve confidentiality while en-
abling public audit, the operator encrypts (req, out)
to the application public key pkapp and posts the re-
sulting ciphertext, together with a signed receipt σop,
to EigenDA. The receipt canonically commits to the
request and output via their hashes and may include
a TEE attestation quote and timestamp, along with
a durable pointer to the DA record. This publication
anchors both availability (via EigenDA) and integrity
(via the operator’s signature and the receipt fields) of
the claimed execution.

Challenge window. Published results are tentative
for a fixed dispute horizon of ∆ epochs. During this
window, any party may inspect receipts and either
initiate a low-cost light audit or file a formal full
challenge. The former offers probabilistic coverage
without slashing authority; the latter invokes on-chain
adjudication and possible penalties.

Re-execution and voting. When a full challenge
is raised, EigenVerify samples a stake-weighted com-
mittee of verifiers. Each verifier boots an attested
TEE running the approved container, establishes mu-
tually attested channels to KMS shards to reconstruct
skapp inside the enclave, decrypts the EigenDA cipher-
text, and deterministically re-executes Infer(req). The
committee then decides by byte-equality vote: each
member casts bv = [ôutv = out], and the verdict is
determined by threshold (e.g., ≥ 2/3).

Finalization. If the committee agrees that ôut =
out, the result is finalized; otherwise, the operator is
slashed and the committee’s majority output replaces
the disputed one. This optimistic design amortizes

3

Table 1: Comparison of verifiable-inference paradigms.

Paradigm Latency Cost Guarantee

ZK proofs very high high mathematical
Statistical replication medium high (many replicas) crypto-economical
CPU/WASM Det. very high low crypto-economical
GPU determinism + optimism (EigenAI) low low crypto-economical

cost—verification runs only under dispute—while de-
terminism collapses adjudication to a binary equality
check.

3.3 Security Assumptions

The security of the protocol rests on standard, explicit
assumptions that align with its layered design:

• Deterministic execution. Holding fixed the GPU
architecture, driver, toolkit, and decoding policy,
repeated runs of Infer(req) are bit-identical (Sec-
tion 6). This guarantees that honest re-executions
converge to a unique ôut.

• Data availability. EigenDA provides durable stor-
age and inclusion proofs for all posted receipts and
ciphertexts, ensuring that disputes can always re-
trieve the exact bytes committed at publication.

• Stake honesty. During any challenge epoch, at
least two thirds of EigenVerify stake behaves hon-
estly. This Byzantine-style assumption underwrites
the committee vote and the credibility of slashing
events.

• TEE integrity. Verifier enclaves support remote
attestation that binds code identity (container di-
gest) and GPU mode to a measurement; only en-
claves presenting valid quotes may participate in
decryption and re-execution.

• Threshold confidentiality. The EigenAI applica-
tion private key is t-of-n secret-shared across KMS
shards; fewer than t colluding shards learn nothing
useful, and shares are released only to enclaves that
satisfy attestation policy.

3.4 Adversary Model

We consider a powerful adversary that may compro-
mise some off-chain components, subject to the as-
sumptions above:

1. Dishonest operator. Attempts to report falsified
outputs, substitute models/containers, or replay
stale receipts in lieu of fresh computation.

2. Colluding verifiers. A minority of EigenVerify stake
coordinates to bias votes, delay challenges, or at-
tempt to exfiltrate plaintext via misconfigured en-
claves.

3. Compromised KMS shard. A single (or minority)
shard discloses partial key material or responds to
non-attested endpoints.

4. Malicious DA participant. Censors or withholds
ciphertexts/receipts to prevent effective challenges
or inclusion proof verification.

5. Timing/side-channel attacker. Observes or per-
turbs enclave execution to infer private data or
influence control flow without altering code iden-
tity.

3.5 Threats and Mitigations

Table 2 consolidates the principal threat classes
with their first-line defenses. In combina-
tion—deterministic kernels and pinned environments
(technical reproducibility), on-chain receipts and DA
proofs (cryptographic integrity), TEEs and thresh-
old KMS (confidentiality), and stake-backed slashing
(economic deterrence)—the system achieves layered,
defense-in-depth protection.

4 Protocol Overview

EigenAI implements an optimistic, verifiable inference
pipeline in which results are accepted by default but
can be efficiently disputed and re-executed under cryp-
toeconomic guarantees. In what follows, we present
the submission path, the receipt and data-availability
interface, the audit and challenge flows, and the deter-
ministic re-execution procedure that together realize
this trust model.

4.1 Submission and Dataflow

Each inference traverses a structured lifecycle (Fig. 1).
The design principle is that every parameter that can
influence numerical outcomes is fixed and committed

4

Table 2: Primary threat classes and mitigations.

Threat Mitigation

Model / kernel
tampering

Immutable container digests; signed
receipts; open-source deterministic
kernels.

Cross-
architecture
drift

Single-arch policy per request; explicit
gpu_arch field in receipt; verifier en-
forcement.

Library /
driver drift

Container pinned by digest; toolkit
and driver version fixed; GPU clock
locking.

Batch nonde-
terminism

Batch-invariant reduction kernels;
fixed decode seeds.

KMS compro-
mise

t-of-n threshold policy; attestation-
gated share release.

TEE compro-
mise

Hardware attestation; code measure-
ment checks; enclave-to-shard TLS.

Verifier collu-
sion

Stake-weighted majority voting; light
audits; fork-choice backstop.

Data with-
holding (DA)

EigenDA inclusion proofs; redun-
dancy across operators.

up front, enabling any verifier to replay the request in
an identical environment.

1. Request preparation. The client constructs a
canonical request

req =
〈

container_digest, gpu_arch, driver_tag,
decode_policy, seed, prompt_commitments

〉
.

signs it, and submits it to an operator. All fields
are treated as immutable execution parameters for
reproducibility; in particular, prompt_commitments
(when present) is a Merkle root that binds any external
documents or tool outputs referenced by the prompt.

2. Deterministic execution. The operator runs
the model inside the declared container on the declared
hardware architecture, producing the token sequence
and, optionally, per-step logits. By construction (Sec-
tion 6), this execution is bit-deterministic: rerunning
the same request under the same environment yields
the identical byte stream.

3. Receipt formation and publication. To cou-
ple confidentiality with auditability, the operator en-
crypts (req, out) to the application public key pkapp
and posts the ciphertext together with a signed receipt
to EigenDA. The receipt commits to the request and
output via their hashes and may include attestation
evidence and timing metadata:

receipt =
〈

H(req), H(out), model_id,
chainid, da_pointer

〉
, σop = Signskop

(receipt).

Publishing to EigenDA establishes durable availability
(for future disputes), while the operator’s signature
anchors integrity and provenance.

4. Data availability and challenge window.
Upon publication, the result enters a fixed dispute
horizon of ∆ blocks. During this challenge window,
any party may retrieve the receipt and either perform
a low-cost light audit or lodge a formal full challenge.
The former offers randomized coverage without on-
chain penalties; the latter triggers adjudication with
the possibility of slashing.

4.2 Light Audit versus Full Challenge

Light audit. A user or watchdog recruits a small,
randomly chosen subset of EigenVerify nodes to re-
execute the request off-chain. This provides proba-
bilistic assurances at minimal cost and is well-suited
for continuous, background integrity monitoring.

Full challenge. If an inconsistency is detected—or
if a counterparty disputes a result—an on-chain chal-
lenge is filed. EigenVerify then samples a stake-
weighted committee V representing a supermajority of
bonded capital. Committee members re-execute the
request in attested TEEs and vote by byte equality
on the operator’s claim.

4.3 Deterministic Re-Execution and
Voting

The adjudication step consists of reproducing the
claimed computation inside trusted enclaves and de-
ciding by equality of bytes. Concretely, each verifier
v ∈ V:

1. boots an enclave with the approved container (pro-
ducing an attestation quote),

2. proves attestation to the KMS shards and recon-
structs skapp in-enclave,

3. fetches the ciphertext and receipt from EigenDA
and verifies σop,

4. deterministically runs Infer(req) to obtain ôutv,

5. casts a vote bv = [ôutv = out].

If the vote fraction satisfies
∑

bv/|V| ≥ τ (e.g., τ =
2/3), the result is accepted; otherwise, the operator is
slashed and the committee’s majority output replaces
the disputed one. Determinism collapses the decision
to a binary equality test, eliminating ambiguity and
extensive deliberation.

5

Client Operator EigenDA EigenVerify

Light audits:
minority stake
(no slashing)

Full challenges:
majority committee,
deterministic re-exec,
byte-equality voting,
slashing on mismatch

Figure 1: Swimlane depicting Client → Operator → EigenDA → EigenVerify. Light audits sample a small
minority of stake (no slashing); full challenges invoke a majority committee for deterministic re-execution,
byte-equality voting, and slashing on mismatch.

Table 3: Receipt schema and field semantics.

Field Purpose

model_id Identifier of model weights
chain_id Identifier of the chain
gpu_arch Hardware generation (e.g., H100)
req_hash Hash of request parameters
out_hash Hash of output logits/tokens
da_pointer EigenDA inclusion reference
sig Operator’s digital signature

Algorithm 1 Operator submission routine (canoni-
calized).

1: Input: req, model M, container C, GPU arch a
2: out← Infer(M,C, a, req)
3: rcp← ⟨H(req), H(out), t⟩
4: σop ← Signskop

(rcp)
5: cipher← Encpkapp

(req, out)
6: Publish (cipher, rcp, σop) to EigenDA
7: Start challenge timer ∆

Cost amortization. Because re-execution is invoked
only under dispute, steady-state operation mirrors
ordinary inference costs. When challenges do occur,
determinism ensures that even a single honest verifier
suffices to detect fraud, and a small committee can
finalize outcomes with minimal overhead.

5 Privacy Architecture: Thresh-
old KMS and TEEs

While verifiability necessarily promotes transparency,
many EigenAI users operate on sensitive data that
must remain private. To reconcile these opposing
demands, EigenAI layers a robust confidentiality sub-
strate atop its verifiable infrastructure through a com-
bination of threshold key management and trusted
execution environments (TEEs). This architecture

Algorithm 2 Full challenge verification (deterministic
re-execution).

1: Input: DA pointer p, receipt rcp, signature σop

2: V ← stake-weighted committee sample
3: for v ∈ V in parallel do
4: Boot attested enclave; obtain quote qv
5: Establish attested channels to KMS; recon-

struct skapp
6: Download (cipher, rcp) from EigenDA
7: Verify σop; decrypt to (req, out)
8: ôutv ← Infer(req)
9: Vote bv ← [ôutv = out]

10: end for
11: if

∑
bv/|V| < τ then

12: Slash operator stake; finalize majority ôut
13: else
14: Finalize out as verified
15: end if

allows verification of correctness without revealing the
underlying user data.

5.1 End-to-End Encryption and Key
Management

Every inference request and its corresponding output
are encrypted to the EigenAI application public key
pkapp before publication. The corresponding private
key skapp is never held in a single location; instead, it
is fragmented into n shares and distributed across the
EigenVerify Key Management Service (KMS) network
using a t-of-n threshold scheme, such as Shamir’s se-
cret sharing. No single KMS shard can decrypt or
reconstruct skapp independently, and shards only re-
lease key shares to enclaves that successfully prove
their authenticity and code integrity via remote attes-
tation. This design enforces that decryption can occur
only within verified, attested enclaves, ensuring that
plaintext data never exists outside of secure execution

6

contexts.

5.2 Remote Attestation and Secure
Share Release

The interaction between verifier enclaves and KMS
shards follows a mutually authenticated sequence, de-
picted conceptually in Fig. 2. This sequence guaran-
tees that key material is distributed only to legitimate
enclaves running approved EigenAI software stacks:

1. A verifier launches a TEE running the approved
container image, producing a hardware-signed at-
testation quote q that includes a cryptographic
hash of the loaded binary (the measurement).

2. Each KMS shard validates q, confirming that the
enclave is both genuine and running an authorized
EigenAI image. Quotes are also checked for fresh-
ness to prevent replay attacks.

3. After successful validation, shards establish mu-
tually attested TLS sessions with the enclave, en-
suring end-to-end confidentiality and integrity of
communication.

4. Shards transmit their encrypted key shares to the
enclave, which reconstructs skapp entirely in volatile
memory. Using this key, the enclave decrypts the
EigenDA ciphertext and proceeds with determinis-
tic re-execution of the inference task.

5. Upon completion, the enclave securely zeroizes
skapp and all session-specific secrets, preventing
residual key material from persisting after verifica-
tion.

This remote attestation sequence is central to Eige-
nAI’s privacy architecture: it cryptographically binds
data access to verified code identity, thereby elimi-
nating the possibility of decryption by compromised
nodes or untrusted software.

5.3 Auditability Without Decryption

Importantly, confidentiality does not come at the ex-
pense of transparency. Because each inference is ac-
companied by cryptographic commitments—H(req)
and H(out)—external auditors can verify inclusion
proofs on EigenDA and validate operator signatures
without accessing any plaintext data. This property al-
lows independent parties to conduct statistical audits
of operator honesty and data-availability compliance
while maintaining end-to-end encryption of user con-
tent. In effect, the system preserves both verifiable
correctness and privacy by design.

5.4 Key Epochs, Rotation, and Policy
Enforcement

To further mitigate long-term compromise risk, Eige-
nAI enforces periodic key rotation through key epochs.
Each receipt explicitly records the key epoch used
during encryption. KMS policies track these epochs
and automatically deny reconstruction requests for
retired keys. When a rotation event occurs—either
on schedule or triggered by a security incident—new
key shares are generated, and governance proposals
via EigenVerify are used to update metadata across
participants. This guarantees forward secrecy while
maintaining uninterrupted availability for active re-
quests.

Taken together, these mechanisms ensure that verifia-
bility and confidentiality coexist harmoniously. Deter-
ministic execution and public receipts make correct-
ness independently checkable, while threshold cryp-
tography and attested enclaves guarantee that user
data remains inaccessible to all parties except during
secured, ephemeral re-execution inside TEEs.

6 Deterministic Inference: Tech-
nical Foundations

Deterministic inference forms the technical corner-
stone of EigenAI’s verifiability framework. Without
strict bit-level reproducibility, optimistic re-execution
would become ambiguous—disputes could not be re-
solved by simple equality checks, and consensus would
devolve into probabilistic agreement. This section sur-
veys the sources of nondeterminism in modern GPU-
based deep-learning systems, outlines the engineering
controls used to eliminate them, and discusses their
empirical validation. It extends our prior Bit-Exact
Inference on GPUs work with new insights specific to
cryptoeconomic verification.

6.1 Why Determinism Matters

Large language model (LLM) inference comprises
thousands of parallel GPU kernels performing lin-
ear algebra and nonlinear reductions. Minute vari-
ations in operation ordering, rounding behavior, or
kernel selection can perturb the resulting logits and,
consequently, alter sampled tokens. In everyday appli-
cations this variability is imperceptible; in a verifiable
execution setting it is catastrophic. Because Eigen-
Verify relies on comparing the outputs of independent
re-executions, even a single bit of nondeterministic
drift would undermine the ability to distinguish honest
disagreement from dishonesty.

7

TEE enclave
(EigenAI verifier)

KMS shards
(t-of-n shares)

Attestation quote
(container mea-

surement)

Verify quote
& enclave identity

Reconstruct skapp
in-enclave

Release encrypted
key shares over
attested TLS

Decrypt payload
from EigenDA

Deterministic
re-execution
& verification

Zeroize skapp and
all session secrets

attest

attested TLS

Figure 2: TEE–KMS negotiation flow. The enclave attests its container measurement; KMS shards verify the
quote, establish attested TLS connections, and release key shares. The enclave reconstructs skapp in memory,
decrypts the payload, performs verification, and zeroizes all secrets afterward.

Establishing determinism transforms inference from a
stochastic numerical process into a pure function:

F : (model, arch, prompt, seed, decode) −→ output,

where output is guaranteed to be bit-identical for all
honest re-executions given the same parameters.

6.2 Sources of Nondeterminism

Determinism in GPU inference is fragile and may be
compromised by variations across the hardware and
software stack. We categorize four principal layers of
variability, illustrated conceptually in Fig. 3.

1. Hardware. Floating-point units differ slightly
across GPU generations (e.g., A100 vs. H100), im-
plementing fused multiply-add (FMA) and round-
ing modes with subtle architectural distinctions.
Deterministic inference therefore requires enforcing
single-architecture policies.

2. Math Libraries. Core libraries such as cuBLAS,
cuDNN, or TensorRT may invoke atomic operations
or rely on non-associative accumulation orders,

both of which compromise reproducibility. Fur-
thermore, “fast math” and mixed-precision modes
often trade consistency for throughput.

3. Inference Engine. Framework-level optimiza-
tions—dynamic graph fusion, asynchronous kernel
launches, and stochastic decoding—introduce an-
other layer of variability. Although frameworks
such as PyTorch and TensorFlow offer determinis-
tic flags, these apply only to a subset of supported
operations.

6.3 Hardware-Level Determinism

Modern NVIDIA GPUs can achieve bit-exact repro-
ducibility when operated under controlled conditions.
The Hopper architecture family (H100, GH200) guar-
antees repeatable outputs from cuBLAS routines on
identical GPUs and toolkit versions [10, 9]. Indepen-
dent investigations confirm that discrepancies between
architectures stem primarily from software scheduling,
not from arithmetic pipelines [12, 11].

EigenAI enforces a single-architecture policy within
each deployment: all operators and verifiers must

8

Table 4: Visibility matrix for EigenAI’s privacy and verification components.

Component Access to Plaintext? Description

Client Yes Originator and owner of prompts and outputs.
Operator No Encrypts all data to pkapp; never sees plaintext.
EigenDA No Stores ciphertext and receipts; provides inclusion proofs only.
KMS Shard No Holds encrypted key shares; cannot reconstruct full key.
TEE Verifier Yes (in-enclave) Attested enclave temporarily reconstructs skapp for verification
External Auditor No Validates hashes, receipts, and signatures without accessing plaintext.

Hardware
GPU microar-

chitecture,
rounding, warp

scheduling

Driver /
Runtime

CUDA toolkit,
autotuners,

kernel dispatch

Math Libraries
cuBLAS, cuDNN,

TensorRT;
atomic ops,

accumulation

Inference Engine
Graph fusion,
decode policies

Figure 3: Sources of nondeterminism across the GPU stack: (1) Hardware microarchitecture, (2)
Driver/runtime, (3) Math libraries and kernels, (4) Inference engine and decode policy. Each layer must be
pinned or replaced with deterministic equivalents.

utilize identical GPU SKUs, while persistence mode
is enabled to avoid state transitions that might alter
kernel execution order.

6.4 Determinism in Base Libraries

The inference engine underpinning EigenAI builds
upon llama.cpp, an open-source C/CUDA implemen-
tation with a small and auditable numerical surface.
Its quantized matrix-multiplication kernels (e.g., Q4,
Q5) are inherently deterministic: they avoid atom-
ics and implement warp-synchronous reductions with
fixed thread order. For remaining operations that
delegate to cuBLAS or cuBLASLt, EigenAI enforces
deterministic configuration flags [25]:

These settings forbid nondeterministic atomics and
non-associative mixed-precision reductions. Although
cuBLAS is proprietary, its deterministic guarantees
have been repeatedly validated in empirical testing.

6.5 Deterministic Kernel Design

At the core of EigenAI’s reproducibility efforts are
custom GEMM kernels and reduction primitives that
enforce deterministic ordering. Each kernel satisfies
three invariants:

1. Fixed block–thread mapping. Thread blocks
are deterministically mapped to output tiles with no
inter-block communication, ensuring that the GPU’s
scheduler cannot affect numerical outcomes.

2. Warp-synchronous reductions. Within each
block, threads compute partial dot-products and per-
form a canonical binary-tree reduction using warp
intrinsics:

for (int off = warpSize/2; off > 0; off /= 2)
sum += __shfl_down_sync(0xffff, sum, off);

The reduction order is identical across runs, guaran-
teeing reproducible rounding paths [26, 27].

3. No floating-point atomics. All accumulations
are explicitly ordered through register or shared-
memory operations. Floating-point atomics are en-
tirely disabled because their non-associative semantics
can yield nondeterministic results. Despite this re-
striction, deterministic kernels maintain 95–98% of
standard cuBLAS throughput on Hopper-class hard-
ware.

6.6 Deterministic Decoding and
PRNG Control

Token generation, which often involves sampling
from probability distributions (e.g., top-k or nucleus
sampling), introduces another source of variability.
EigenAI enforces deterministic decoding by employ-
ing a fixed-seed pseudorandom number generator
(PRNG) and canonical iteration order. For any pair
(seed, decode_policy), the emitted token sequence
is reproducible. Users seeking nondeterministic sam-
pling may simply vary the seed but can still verify
that any output matches the declared seed and policy
recorded in the operator’s receipt.

9

6.7 End-to-End Determinism Experi-
ments

We validated EigenAI’s deterministic guarantees
through systematic experiments on NVIDIA Hopper
GPUs. Each test identical container digests, and con-
sistent runtime environments.

Setup. Two independent H100 nodes, both execut-
ing llama.cpp-based inference, processed a 1,000-
prompt benchmark spanning summarization, reason-
ing, and code generation tasks. For each execution
we recorded the hash:

SHA256(prompt || logits || tokens).

Results. Across 10,000 runs, all hashes matched
exactly—no bit-level divergence was observed. Cross-
architecture comparisons (A100 vs. H100) yielded
measurable but expected deviations (∼ 10−7 in log-
its), confirming architecture-dependent rounding and
motivating per-architecture verifier pools.

6.8 Reproducibility and Verifiability

Determinism collapses verification to a simple equality
check. Because every honest re-execution yields an
identical byte string, the verification predicate

Verify(out1, out2) =

{
True, out1 = out2,

False, otherwise

becomes both sound and complete. This property
enables EigenAI to scale: verification of thousands of
inference tasks reduces to constant-time byte compar-
isons rather than probabilistic voting or cryptographic
proofs.

6.9 Implementation Guidelines

For practitioners deploying deterministic inference un-
der EigenAI, the following guidelines are mandatory:

• Pin exact CUDA and driver versions (e.g.,
CUDA 12.4 with R550 driver).

• Reference container images by digest and avoid
mutable tags.

• Enable persistence mode.

• Enable deterministic modes in cuBLAS/cuBLASLt
and disallow atomics.

• Disable all nondeterministic math primitives and
autotuners.

• Seed PRNGs deterministically and record seeds in
receipts.

• Hash and sign (prompt, out) tuples for auditability

6.10 Discussion

Our experiments confirm that bit-exact determinism
is achievable on contemporary GPU hardware with
negligible performance loss. By constraining variabil-
ity at every level of the software and hardware stack,
EigenAI converts opaque numerical computation into
a reproducible process amenable to independent re-
execution. This engineering discipline is what enables
cryptoeconomic assurance: in EigenAI, correctness
can be proven by anyone through mere repetition,
with no reliance on statistical tests or zero-knowledge
proofs.

7 Implementation Details and
Developer Experience

EigenAI is designed to feel like a familiar cloud AI
service while embedding deterministic and verifiable
execution at every layer. Developers interact through
an OpenAI-compatible API, and each response carries
deterministic metadata, a cryptographic receipt, and
a pointer into EigenDA for later verification.

7.1 API Compatibility and Metadata

The EigenAI API mirrors the
/v1/chat/completions and /v1/completions
endpoints used by OpenAI. Clients can substitute the
EigenAI base URL without changing request syntax.
Responses contain deterministic metadata fields as
shown in Table 6.

This metadata allows any verifier to retrieve the corre-
sponding entry from EigenDA and re-run the request
under the same environment.

7.2 Container and Hardware Con-
straints

All inference containers are built atop fixed
CUDA/driver pairs, referenced by digest. Opera-
tors must enable persistence mode and turn on ECC
memory (During the testing phase we discovered un-
determinism due to faulty memory. This problem
was mitigated by making sure that ECC was turned
on). Container and driver versions are registered on-
chain and verified by EigenVerify committees during
challenges.

10

Table 5: Empirical determinism verification on Hopper GPUs.

Test Condition Match Rate Notes

Same host, same GPU 100.0% Bitwise identical outputs
Same host, same GPU arch but diff number of GPUs 100.0% Bitwise identical outputs
Different hosts, same cpu arch/GPU SKU 100.0% Bitwise identical outputs
Different GPU architecture (A100 vs. H100) 0.0% Diff. exec paths, rounding

v0 v1 v2 v3 v4 v5 v6 v7

s01 s23 s45 s67

s0123 s4567

S

Figure 4: Canonical warp-level reduction tree used in deterministic kernels. Each thread contributes a
partial value vi and participates in pairwise summations in a fixed binary-tree pattern, ensuring identical
accumulation order and reproducible results across executions.

Algorithm 3 Reproduce-and-Verify Procedure
1: Input: EigenDA pointer p, metadata meta from

API response
2: Download (cipher, receipt) from EigenDA
3: Verify operator signature σop

4: Launch container C with exact digest and driver
5: Set environment variables per

meta.system_fingerprint
6: Run ôut← Infer(req, seed, decode)
7: Compare SHA256(ôut) with receipt.out_hash
8: if hashes match then return VERIFIED
9: elsereturn INVALID

10: end if

7.3 Reproduction Cookbook for Audi-
tors

Auditors can independently reproduce any inference
using the following minimal procedure (Algorithm 3).
Because inference is deterministic, matching hashes
suffice to validate correctness.

Auditors may also verify EigenDA inclusion proofs to

ensure the operator’s record was properly published
and unaltered.

8 Economic and Governance Me-
chanics

EigenAI inherits its security not only from determin-
istic execution but also from the broader cryptoe-
conomic foundation provided by EigenLayer. The
economic layer determines how honest behavior is
incentivized, how disputes are resolved, and how pro-
tocol parameters evolve. In this section we outline
the lightweight audit pathway, the full challenge-and-
slashing mechanism, and the governance structures
that maintain long-term system health.

8.1 Light Audits

Light audits provide an inexpensive integrity check on
the behavior of operators. A watcher or client may re-
cruit a small, randomly selected subset of EigenVerify
nodes to re-execute a published inference off-chain. Be-

11

Table 6: Key response metadata for deterministic verification.

Field Description

system_fingerprint Concatenation of container digest, GPU arch, driver version
determinism.seed Fixed PRNG seed used for decoding
receipt.req_hash SHA256 of request parameters
receipt.out_hash SHA256 of model output
receipt.sig Operator signature over receipt tuple
eigendalink Pointer to EigenDA inclusion proof

cause these audits lack slashing authority, they impose
minimal cost and latency overhead. Their purpose
is statistical: by maintaining a nonzero background
probability of inspection, they deter latent collusion
and encourage operators to remain honest even when
they believe they are not under direct scrutiny. Light
audits may be rewarded through small bounties or
micro-incentives funded by EigenAI usage fees.

8.2 Full Challenges and Slashing
A full challenge is invoked when a receipt is formally
disputed. EigenVerify samples a stake-weighted com-
mittee V and requires a supermajority (e.g., > 2/3)
agreement to finalize the result. Each verifier re-
executes the inference inside an attested enclave and
votes on byte-level equality with the operator’s out-
put. A mismatch triggers slashing of the operator’s
bonded stake, which is redistributed to challengers
and verifiers:

Rewardchallenger = αSslash, Rewardverifier = βSslash,

with α and β set by governance. Remaining stake may
be burned or returned to the EigenLayer treasury.

Because the cost of verification is low compared to
potential fraud gains, the expected utility of cheat-
ing becomes negative for any reasonable challenge
probability πc:

E[Gain] = (1− πc)G− πcSslash < 0,

where G denotes the maximum benefit from dishon-
esty. Since πc is augmented by both light audits and
user-initiated challenges, rational operators are eco-
nomically driven to behave honestly.

8.3 Fork-Choice Backstop
If an extreme collusion scenario were ever to push
an invalid result through verification, EigenLayer’s
fork-choice rule provides a final safety net. Restakers
may coordinate a social fork to penalize misbehaving
validators, restoring correctness. This mechanism

ensures economic finality of truth: the equilibrium
strategy for long-term actors is always to preserve
correctness rather than collude.

8.4 Governance and Parameterization

EigenAI’s operational parameters—stake require-
ments, slashing fractions, challenge thresholds, and
audit frequencies—are governed through the Eigen-
Layer governance process. Governance proposals may
tune these values over time as workloads, economic
conditions, or adversarial models evolve. Looking
ahead, governance may also introduce dynamic fee
markets for audit capacity, enabling users to purchase
higher integrity assurance on demand.

9 Security Analysis

We now examine EigenAI’s security properties in ag-
gregate, showing how determinism, confidentiality,
data availability, and economic incentives interact to
form a cohesive and robust trust model.

9.1 Security Properties and Enabling
Features

We separate security properties (what the system
should guarantee) from features of the construction
(engineering choices that help realize those guaran-
tees).

Desired security properties. EigenAI targets the
following security properties for each published infer-
ence:

• Integrity (correctness): the published output
out corresponds to the unique result of running the
declared model and request under the committed
execution parameters.

• Confidentiality (privacy): prompts and outputs
remain hidden from unauthorized parties; plaintext

12

πc (challenge probability)

E[U]

cheating utility

π∗
c =

G

Sslash

G

−Sslash

honest baseline

Figure 5: Payoff diagram comparing operator utilities under varying challenge probabilities πc. A dishonest
operator’s expected utility becomes negative once πc > G/Sslash, making cheating economically irrational.

is exposed only to authorized clients and, during dis-
pute resolution, transiently inside attested verifier
enclaves.

• Availability: the evidence needed to audit or dis-
pute an inference (ciphertext, receipt, and DA in-
clusion evidence) remains retrievable throughout
the challenge window.

• Accountability: if an operator publishes an incor-
rect result, there exists a publicly checkable proce-
dure that can penalize the operator (slashing) and
finalize a correct outcome.

Enabling features of the construction. These
properties are supported by (non-exhaustively):

• Compute determinism (Section 6), which makes
inference effectively single-valued and enables un-
ambiguous re-execution.

• Cryptographic commitments and data avail-
ability (operator receipts and EigenDA publica-
tion), which bind claims to immutable bytes retriev-
able for disputes.

• TEE-based private re-execution with thresh-
old keys (Section 5), which permits verification on
private data without revealing plaintext in steady
state.

• Optimistic verification with stake-backed
slashing, which turns detected mismatches into
enforceable economic penalties.

9.2 Soundness and Completeness

Soundness. Soundness requires that dishonest be-
havior be detectable. If an operator deviates from the
canonical deterministic execution, any honest verifier
will compute a different output during re-execution.

Because verification reduces to byte-equality, disagree-
ment is unambiguous, and the probability of unde-
tected fraud falls exponentially with the fraction of
honest stake participating in the committee.

Completeness. Completeness requires that honest
operators never be penalized. Determinism guaran-
tees that re-executions match the operator’s output
exactly, irrespective of runtime noise (e.g., cache state,
thread scheduling). Fixed PRNG seeds and canonical
reduction orders ensure that honest executions always
converge to the same result, preventing false slashing.

9.3 Privacy and Confidentiality

Confidentiality is preserved through threshold key
management and TEE-based attestation (Section 5).
Only attested enclaves executing approved con-
tainers ever reconstruct skapp. All other compo-
nents—including operators, DA nodes, auditors, and
even KMS shards—observe only cryptographic com-
mitments or encrypted payloads. Thus, verifiability
and confidentiality reinforce one another: verification
speaks to correctness, while TEEs guarantee that ver-
ification does not leak sensitive user data.

9.4 Liveness and Fault Tolerance

EigenDA ensures that ciphertexts and receipts remain
retrievable for the duration of the challenge window.
EigenVerify’s committee sampling tolerates partial
failures: if some verifiers are offline or unresponsive,
the remaining honest majority can still reach a verdict.
Timeouts ensure that the system progresses even if
no challenge is raised, providing liveness equivalent to
other optimistic systems.

13

Table 7: Residual risks and planned mitigations.

Residual Risk Mitigation / Roadmap

Cross-
architecture
portability

Maintain per-architecture verifier
pools; explore numeric normalization
for cross-device verification.

Closed-source
library paths

Replace remaining cuBLAS/cuDNN
calls with open deterministic kernels.

Economic pa-
rameter drift

Regular governance calibration and
dynamic fee markets.

Operator
cartelization

Stake decentralization; randomized
committee sampling.

9.5 Residual Risks and Mitigations

Table 7 summarizes remaining risks. Some stem
from hardware trust assumptions (TEEs), others from
portability constraints (GPU architecture differences).
In each case, we outline roadmap items to further
reduce exposure.

Overall, EigenAI achieves layered, composable secu-
rity: determinism provides technical reproducibility,
TEEs enforce confidentiality, EigenDA guarantees
availability, and EigenLayer adds cryptoeconomic cor-
rectness. These layers interlock to produce a verifiable
inference system resilient to both adversarial behavior
and accidental faults.

10 Evaluation and Experiments
We evaluate EigenAI along three axes: (i) the ro-
bustness of bit-exact determinism under realistic de-
ployment conditions, (ii) the performance overhead
of deterministic kernels relative to vendor-optimized
baselines, and (iii) the end-to-end cost of verification
in light and full challenge scenarios. All experiments
were conducted on NVIDIA H100 GPUs using pinned
container digests and identical software environments.

10.1 Determinism Verification

We first assess whether EigenAI’s execution stack pro-
duces bit-identical outputs across repeated runs and
heterogeneous deployment settings. Repeated infer-
ence on the same host yielded perfect equality across
all logits and generated tokens. Cross-host experi-
ments—running identical containers on two indepen-
dent H100 nodes—also produced exact matches. To
probe sensitivity to batching and runtime variability,
we perturb the batch size by ±20%, observing no di-
vergence. As expected, cross-architecture tests (A100
versus H100) do not match bitwise due to differences
in floating-point rounding behavior, underscoring the

Table 8: Determinism evaluation across hosts and
configurations.

Configuration Hosts Batches Match

Same host 1 10 100.0%
Different hosts / same SKU 2 10 100.0%
Batch-size variance ±20% 2 20 100.0%
Diff arch (A100 vs H100) 2 10 0.0%

Table 9: Throughput and latency comparison (batch
= 8, seq = 1024).

Kernel Type Rel. Thrpt Overhead

cuBLAS (baseline) 1.00× –
Det. GEMM (EigenAI) 0.97× +2.4%
Det. mixed-precision 0.95× +4.1%
End-to-end LLM inference 0.98× +1.8%

need for per-architecture verifier sets.

10.2 Stress and Batch-Invariance Tests

To evaluate robustness under operational noise, we
co-schedule background GPU workloads that induce
synthetic jitter and scheduling variability. Despite
this perturbation, all runs produced identical outputs,
confirming that deterministic kernel design—warp-
synchronous reductions, fixed decoding order, and
pinned software stack—effectively isolates inference
from transient runtime effects. These results indicate
that EigenAI’s determinism holds not only under ide-
alized conditions but also in realistic multi-tenant and
performance-variable environments.

10.3 Performance Overhead

Next, we quantify the throughput and latency cost
of deterministic kernels relative to vendor-optimized
baselines. On Hopper GPUs, our deterministic
GEMM kernels achieve 97–99% of cuBLAS through-
put for quantized matrix multiplications, and approx-
imately 95% for mixed-precision projection layers.
End-to-end LLM inference shows only a modest la-
tency increase (≈ 1.8%), demonstrating that deter-
minism can be achieved without compromising state-
of-the-art performance.

11 Limitations and Future Work

Although EigenAI achieves deterministic inference and
robust verification, several open challenges remain:

14

• Cross-Architecture Reproducibility. Deter-
minism currently holds only within fixed GPU fam-
ilies. Future work includes portable numeric nor-
malization to enable heterogeneous verifier sets.

• Residual Library Paths. Certain cuBLAS and
cuDNN operations remain closed-source; we plan
to replace them with open deterministic equivalents
to achieve complete auditability.

• Tool and API Determinism. Agents that call
external APIs or tools require deterministic tran-
script recording; EigenAI will extend receipts to
include signed external call logs.

12 Conclusion

EigenAI unites deterministic GPU inference, privacy-
preserving verification, and EigenLayer’s crypto-
economic guarantees into a single coherent plat-
form. By making AI results reproducible, auditable,
and slashable under fraud, it delivers a practical
route to verifiable AI at state-of-the-art per-
formance. These properties enable trustworthy
sovereign agents—AI systems that can autonomously
act, reason, and transact across high-stakes domains
both on- and off-chain. As deterministic computation
and cryptoeconomic security converge, verifiable intel-
ligence becomes a first-class primitive for decentralized
and enterprise ecosystems alike.

References

[1] Ghodsi, Z., Gu, T., and Garg, S. “SafetyNets:
Verifiable Execution of Deep Neural Networks
on an Untrusted Cloud.” Advances in Neural
Information Processing Systems 30, 2017.

[2] Kang, D., Hashimoto, T., Stoica, I., and Sun, Y.
“Scaling Up Trustless DNN Inference with Zero-
Knowledge Proofs.” arXiv:2210.08674, 2022.

[3] Gal, Y., and Ghahramani, Z. “Dropout as a
Bayesian Approximation: Representing Model
Uncertainty in Deep Learning.” Proc. 33rd ICML,
2016.

[4] Lakshminarayanan, B., Pritzel, A., and Blundell,
C. “Simple and Scalable Predictive Uncertainty
Estimation Using Deep Ensembles.” NeurIPS 30,
2017.

[5] Wang, X., Wei, J., Schuurmans, D., et al. “Self-
Consistency Improves Chain-of-Thought Reason-
ing in Language Models.” Proc. ICLR 2023.

[6] Atıl, B., Aykent, S., Chittams, A., et al. “Non-
Determinism of ‘Deterministic’ LLM Settings.”
arXiv:2408.04667 (v2 Apr 2025).

[7] PyTorch Core Team. “Reproducibility—Notes on
Randomness and Determinism.” PyTorch Docu-
mentation v2.7, 2023.

[8] ONNX Runtime Team. “Performance Tips for
ONNX Runtime Web (WASM Backend).” Tech-
nical note, 2023.

[9] NVIDIA Corporation. cuBLAS Library User
Guide, Release 12.3, §2.1 “Results Reproducibil-
ity.” Santa Clara, CA, Aug 2023.

[10] NVIDIA Corporation. cuBLAS Library User
Guide, CUDA Toolkit v12.9, §2.4.20, 2023.

[11] Shanmugavelu, A., et al. “Impacts of Floating-
Point Non-Associativity on Reproducibility
for HPC and Deep Learning Applications.”
arXiv:2403.11545, 2024.

[12] Coleman, C., and Siemons, J. “Non-Determinism
in GPU-Accelerated Deep Learning Frameworks.”
arXiv:2208.13040, 2022.

[13] EigenLabs. EigenVerify Overview (Objective Dis-
pute Resolution Preview). EigenCloud Documen-
tation, 2025.

[14] EigenLabs. EigenCloud Brings Verifiable AI to
Mass Market with EigenAI and EigenCompute
Launches. EigenCloud Blog, Sept 2025.

[15] NVIDIA Corporation. CUDA Compatibility
Guide for Developers, 2023.

[16] NVIDIA Corporation. NVIDIA System Manage-
ment Interface (nvidia-smi) User Guide, 2023.

[17] NVIDIA Corporation. “Best Practices for
NVIDIA Container Images.” Technical documen-
tation, rev. 2024.

[18] EigenLabs. EigenLayer Core Protocol and Restak-
ing Architecture. Technical white paper, 2025.

[19] Shamir, A. “How to Share a Secret.” Communi-
cations of the ACM, 22(11):612–613, 1979.

[20] Intel Corporation. Intel Software Guard Exten-
sions (SGX) Developer Guide, 2016.

[21] AMD. Secure Encrypted Virtualization (SEV)
Architecture Reference Manual, rev. 1.55, 2020.

[22] Murphy, S. “Building CUDA Images on GitHub
Runners with Nix.” Technical note, 2024.

15

[23] NVIDIA. Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Paral-
lelism. GitHub repository, accessed May 2025.

[24] Stoyanov, R., et al. “CRIUgpu: Transparent
Checkpointing of GPU-Accelerated Workloads.”
arXiv:2502.16631, 2025.

[25] NVIDIA Developer Blog. “Reproducible Results
with cuBLASLt.” June 2023.

[26] NVIDIA Developer Blog. “Using CUDA Warp-
Level Primitives.” July 2018.

[27] Riach, D. “Determinism in Deep Learning.”
NVIDIA GTC Presentation S9911, 2019.

[28] EigenLabs. EigenLayer Economic Security and
Slashing Parameters. Technical whitepaper, 2025.

[29] EigenLabs. EigenLayer Governance Framework.
Documentation, 2025.

[30] EigenLabs. EigenDA: Data Availability for Veri-
fiable Compute. Whitepaper, 2025.

[31] EigenLabs. EigenCompute: Verifiable Container
Runtime for Deterministic Agents. Technical doc-
umentation, 2025.

[32] EigenLabs Research. Empirical Evaluation of De-
terministic Inference Kernels on Hopper GPUs.
Internal report, 2025.

[33] Zhang, Y., and Coleman, C. “DetBench: Bench-
marking Deterministic Deep Learning Kernels.”
arXiv:2411.01854, 2024.

[34] Blackman, D., and Vigna, S. “Scrambled Lin-
ear Pseudorandom Number Generators.” ACM
Transactions on Mathematical Software, 45(2):28,
2018.

[35] Docker Inc. Content Addressable Storage and Im-
age Digests in Docker. Technical documentation,
2023.

[36] EigenLabs. EigenDA Proof Structures and Merkle
Verification API. Developer documentation, 2025.

16

	Introduction and Motivation
	Background and Related Work
	System Model and Threats
	System Entities
	Workflow Overview
	Security Assumptions
	Adversary Model
	Threats and Mitigations

	Protocol Overview
	Submission and Dataflow
	Light Audit versus Full Challenge
	Deterministic Re-Execution and Voting

	Privacy Architecture: Threshold KMS and TEEs
	End-to-End Encryption and Key Management
	Remote Attestation and Secure Share Release
	Auditability Without Decryption
	Key Epochs, Rotation, and Policy Enforcement

	Deterministic Inference: Technical Foundations
	Why Determinism Matters
	Sources of Nondeterminism
	Hardware-Level Determinism
	Determinism in Base Libraries
	Deterministic Kernel Design
	Deterministic Decoding and PRNG Control
	End-to-End Determinism Experiments
	Reproducibility and Verifiability
	Implementation Guidelines
	Discussion

	Implementation Details and Developer Experience
	API Compatibility and Metadata
	Container and Hardware Constraints
	Reproduction Cookbook for Auditors

	Economic and Governance Mechanics
	Light Audits
	Full Challenges and Slashing
	Fork-Choice Backstop
	Governance and Parameterization

	Security Analysis
	Security Properties and Enabling Features
	Soundness and Completeness
	Privacy and Confidentiality
	Liveness and Fault Tolerance
	Residual Risks and Mitigations

	Evaluation and Experiments
	Determinism Verification
	Stress and Batch-Invariance Tests
	Performance Overhead

	Limitations and Future Work
	Conclusion

